01:02
Jak si můžete doma vypěstovat velký krystal kuchyňské soli? Do nasyceného roztoku vložíte větší krystalek soli přilepený na niti. Po týdnu nebo dvou krystalek vyroste. Pokud budete trpěliví, vypěstujete opravdu velký krystal.
Zhlédněte ukázku výroby železa ve vysoké peci v Třineckých železárnách, kde se železo vyrábí už od poloviny 19. století. Hlavními surovinami k výrobě surového železa jsou železná ruda a koks z černého uhlí, které se tu těží. Proces výroby železa ve vysoké peci je z velké části řízený počítačem a trvá přibližně osm hodin.
Hlavními složkami vzduchu jsou dusík a kyslík. Jak vypadají a jaké mají vlastnosti? Jak se změní vlastnosti látek v kapalném kyslíku a dusíku? Jak například hoří cigareta namočená v kapalném kyslíku?
Kationty kovů se používají v pyrotechnice na barvení plamene. Jakým způsobem změní barvu plamene lithium? Kationty kovů se působením tepla uvolňují ze svých solí a barví plamen. Sodík žlutě, baryum zeleně a lithium barví plamen do červena.
Odkud na Zemi pochází drahocenný uhlík? Jak se liší grafit a diamant svou strukturou a vlastnostmi?
Jakou barvou plamene hoří síra? Při hoření se síra taví do krvavě rudé barvy a hoří modrým plamenem.
Motivační video pro mladé vědce na střední škole. Šestimocný chróm vznikající při různých výrobách je karcinogenní a je ho třeba odstranit ze znečištěné vody. Mladá vědkyně šestimocný chróm pomocí různých analytických metod pomocí hlinitokřemičitanů převádí na trojmocný, který je pro životní prostředí neškodný.
Pokus dokazuje přítomnost železa v krvi. Krev se vyvaří do sucha, rozdrtí se na prášek a pomocí magnetu se ukáže přítomnost železa. To je součástí hemoglobinu obsaženého v krvi, který umožňuje dýchání a při tom do plic přivádí kyslík a z plic odvádí oxid uhličitý.
Hoření je chemická reakce, oxidace hořlavé látky za přístupu vzduchu. Oheň je jedním z objevů, které změnily dějiny lidstva. Hoří téměř cokoliv, ale musíme vědět, co čím uhasit. Podívejte se s námi, jak funguje princip hoření, jaké jsou typy hasících přístrojů a k hašení jakých látek slouží.
V rámci experimentu si připravíme několik roztoků, které tvoří destilovaná voda, koncentrovaná kyselina sírová, peroxid vodíku, škrob, kyselina malonová a síran manganatý. Když je smícháme s ionty jodičnanu, jódu a jodidovými ionty, dojde k oscilační reakci, která se dá využít k měření času. Principem tohoto pokusu je posun rovnovážného stavu, který vede ke změnám barvy v pravidelném časovém rytmu.
Pro vytváření filmových efektů se často používají chemické reakce. Například reakce práškového kovového zinku se sírou, která působí jako oxidační činidlo. Jaký efekt můžeme vytvořit jejich zapálením? Díky vysoké teplotě a rychlosti reakce vzniká jasný záblesk.
V pokusu porovnáme tři směsi plynů: vzduch, vydechovaný vzduch z plic a oxid uhličitý připravený reakcí octa a kypřícího prášku. Každý z plynů vpravíme do sklenice s připraveným flavinovým indikátorem pH z červeného zelí. Vysoká koncentrace oxidu uhličitého vytvoří kyselý roztok, který se projeví zbarvením indikátoru do červena. Oxid uhličitý je rozpustný ve vodě, která se nachází v mracích, což vysvětluje vznik kyselých dešťů.
Do kádinky s hořící svíčkou nasypeme jedlou sodu a přidáme ocet. Reakcí vzniká oxid uhličitý, který je těžší než vzduch a nepodporuje hoření, takže dojde kvůli nedostatku kyslíku k uhašení svíčky.
Neodym je chemický prvek, který má velké uplatnění. Síla a mohutnost výbuchu sopky může být předpovídána díky sledování neodymových izotopů. Neodym se také používá k barvení skla. A v neposlední řadě neodym v kombinaci se železem a borem vytváří nejsilnější magnet na světě. A jak si vyrobit jednopólový motor?
Co se stane, když do tekutého dusíku nalijeme vodu? Když do tekutého dusíku, který má teplotu -196 °C, nalijeme horkou vodu se saponátem a barvivem, dojde k velmi efektní explozi.
Výrobci čipů se pohybují v nanosvětě už hezkou řádku let. Nanotechnologie, které využívají světa o rozměrech miliardtin metru, se k nám ale dostávají stále častěji i jinými cestami. Nanoimpregnace, nanodeodoranty, nanostříbrné antibakteriální přípravky, nanoimplantáty, nanopovrchy… To vše a mnoho dalšího nabízí výzkum v oblasti nanočástic. Co z něho vyplývá v praxi?
14 076
796
4 778
1 364
68
Každý měsíc přibývají na ČT edu desítky nových materiálů pro vaši výuku
Novinky posíláme jednou za měsíc. Nebudeme vám posílat žádný spam. Vložením e-mailu souhlasíte se zpracováním osobních údajů.