01:02
Jak si můžete doma vypěstovat velký krystal kuchyňské soli? Do nasyceného roztoku vložíte větší krystalek soli přilepený na niti. Po týdnu nebo dvou krystalek vyroste. Pokud budete trpěliví, vypěstujete opravdu velký krystal.
Hlavními složkami vzduchu jsou dusík a kyslík. Jak vypadají a jaké mají vlastnosti? Jak se změní vlastnosti látek v kapalném kyslíku a dusíku? Jak například hoří cigareta namočená v kapalném kyslíku?
Zhlédněte ukázku výroby železa ve vysoké peci v Třineckých železárnách, kde se železo vyrábí už od poloviny 19. století. Hlavními surovinami k výrobě surového železa jsou železná ruda a koks z černého uhlí, které se tu těží. Proces výroby železa ve vysoké peci je z velké části řízený počítačem a trvá přibližně osm hodin.
Kyselina chlorovodíková reaguje s některými kovy za vzniku vodíku. Zinek a železo jsou neušlechtilé kovy, proto s nimi kyselina reaguje. Naopak s mědí nereaguje, protože měď je ušlechtilý kov.
Máme pro vás pokus. Ukázku rozkladu vodného roztoku chloridu sodného pomocí dvou tužek, devítivoltové baterie a vodiče. Michael nám vysvětlí, co je to elektrolýza. Na dvou elektrodách získaných z ořezaných tužek se po zapojení vyvíjejí plyny. Na záporné katodě vzniká vodík, který můžeme skladovat a používat jako palivo, a na kladné anodě chlór. Možná pro vás máme recept na energetickou krizi.
Kationty kovů se používají v pyrotechnice na barvení plamene. Jakým způsobem změní barvu plamene lithium? Kationty kovů se působením tepla uvolňují ze svých solí a barví plamen. Sodík žlutě, baryum zeleně a lithium barví plamen do červena.
Šíření škodlivin v ovzduší lze simulovat v aerodynamickém tunelu. Koncentrace olova na Příbramsku mnohonásobně převyšovala povolené limity i po zavedení ekologických opatření. A právě díky simulaci bylo zjištěno, že zdrojem znečištění není továrna. Kde se tedy olovo v ovzduší bere? V okolí se už téměř 1000 let těží olověná ruda a půda je olovem prosycená, orbou se olovo dostává do ovzduší.
Suchý led není nic jiného než oxid uhličitý v pevném skupenství. Můžeme jej vyrobit ze sněhového hasičského přístroje, který nastříkáme do pevné látky. Reakcí suchého ledu s vodou vzniká mlha, ale suchý led může také explodovat v uzavřené PET lahvi s vodou.
Kde všude můžeme najít uhlík? Mezi základní formy čistého uhlíku patří grafit a diamant. Jak vypadá jejich struktura a z ní vyplývající vlastnosti? Existují ale i další uměle vytvořené struktury uhlíku, jako je například grafen a fullereny. Jaké jsou jejich možnosti využití?
Oxid uhličitý pocházející ze spalování fosilních paliv značně přispívá ke globálnímu oteplování. Zvýšení množství oxidu uhličitého v atmosféře brání úniku tepla do vesmíru a zahřívá naši planetu. Ale co kdybychom oxid uhličitý zachytili dříve, než unikne? Přesně o to usilují evropští vědci a technici. Podstata této koncepce spočívá v tom, že se zachytí oxid uhličitý pocházející z elektráren a jiných závodů založených na spalování uhlí a uloží se hluboko do země.
K manganistanu draselnému přidáme glycerin. Manganistan draselný je silné oxidační činidlo. Po přidání glycerinu dojde k oxidaci, která vede k následnému vzplanutí, přičemž uvolněné draselné ionty zbarví plamen do fialova.
Reakcí siřičitanu sodného s jodičnanem draselným v kyselém prostředí vzniká jod, který reaguje se škrobem, což se projeví modrým zbarvením.
Bubliny získané z bublifuku jsou těžší než vzduch, a proto klesají k zemi. Ale co by se stalo, kdyby vzduch byl těžší než bubliny? Michael Londesborough nám tento jednoduchý experiment předvede. Z kypřícího prášku a octa si připravíme oxid uhličitý, kterým vyplníme akvárium. Bubliny se budou vznášet nad oxidem uhličitým, jelikož je těžší než vzduch.
Co se stane, když zapálíme balónek naplněný vodíkem? Vodík je hořlavý plyn, proto dojde k explozi a vzplanutí balónku. Jak to vypadá, se podívejte sami.
Jak se zpracovává železo kováním? Železo se musí zahřát na vysokou teplotu, aby se rozžhavilo dočervena, změklo a dalo se tvarovat. Naproti tomu cizelér neboli kovotepec zpracovává plech za studena poťukáváním podstatně lehčím kladívkem než kovář.
Video seznámí žáky s periodickou tabulkou prvků, která byla sestavena ruským chemikem D. I. Mendělejevem v roce 1869. V roce 2024 tedy oslavila 155 let od svého vzniku. Při svém vzniku obsahovala mnohem méně prvků než dnes. V současnosti v ní najdeme 118 chemických prvků, které jsou seřazeny podle rostoucího protonového čísla do vodorovných period a svislých skupin. V tabulce jsou kromě názvů a značek prvků uvedeny také důležité konstanty, které poskytují chemikům informace o daných prvcích a jejich vlastnostech.
Na Vysoké škole báňské v Ostravě vyvinuli unikátní senzor, který měří hladinu kyslíku ve vzduchu v nemocnicích. Namátkové měření na jedné z jednotek naměřilo 27 % kyslíku, což je nebezpečně mnoho a hrozí nebezpečí výbuchu či požáru. A právě proto se ostravští vědci vrhli na vývoj tohoto senzoru. Jen ostravské nemocnice by jich potřebovaly několik desítek.
Vlastnosti kapalného dusíku jsou dobře známé. Ale co se stane odpařením kapalného dusíku? Kapalný dusík vpravíme do PET lahve, kterou uzavřeme a vložíme ho do nádoby s pingpongovými míčky. Dojde k výbuchu, protože dusík při odpaření zvětší několikrát svůj objem.
12 808
718
4 337
1 210
69
Každý měsíc přibývají na ČT edu desítky nových materiálů pro vaši výuku
Novinky posíláme jednou za měsíc. Nebudeme vám posílat žádný spam. Vložením e-mailu souhlasíte se zpracováním osobních údajů.