01:11
Máme pro vás pokus. Ukázku rozkladu vodného roztoku chloridu sodného pomocí dvou tužek, devítivoltové baterie a vodiče. Michael nám vysvětlí, co je to elektrolýza. Na dvou elektrodách získaných z ořezaných tužek se po zapojení vyvíjejí plyny. Na záporné katodě vzniká vodík, který můžeme skladovat a používat jako palivo, a na kladné anodě chlór. Možná pro vás máme recept na energetickou krizi.
Stromy a rostliny pomocí slunečního záření produkují kyslík. Vyrobit ho ale může i člověk. Smícháním chlorového bělidla a peroxidu vodíku dojde k reakci, při které vzniká voda, sůl a také kyslík. Přiblížením žhavé špejle provedeme důkaz přítomnosti kyslíku, který je nezbytný pro hoření.
Krátká ukázka reakce koncentrované kyseliny sírové s cukrem (sacharózou) a k čemu při ní dochází. Kyselina sírová je jednou z nejdůležitějších průmyslově vyráběných chemikálií. Je hydroskopická, proto odnímá látkám vodu. Z toho důvodu je třeba zacházet s kyselinou sírovou velmi opatrně, způsobuje totiž poškození kůže.
Kyselina chlorovodíková reaguje s některými kovy za vzniku vodíku. Zinek a železo jsou neušlechtilé kovy, proto s nimi kyselina reaguje. Naopak s mědí nereaguje, protože měď je ušlechtilý kov.
Myslíte, že lze něco zapálit kouskem ledu? Nesmysl? V chemii je možné vše. Stačí k tomu zinek, chlorid amonný a dusičnan amonný. Do směsi vložíme led, vznikne oxid dusný a vodní pára. V tomto prostředí se zinečný prach začne měnit na oxid zinečnatý hořením. Také poznáte vlastnosti karbidu vápníku. Co se stane při jeho vhození do sněhu? Uvolňuje se plyn zvaný acetylen, který velmi ochotně hoří.
Pokus, ve kterém smícháme 50 ml benzínu s 50 ml vody. Dojde k vytvoření nemísitelné směsi. Přítomnost benzínu na hladině vody si prokážeme názornou ukázkou. A to jeho zapálením.
Proč se dichroman amonný nazývá vesuvský oheň nebo také sopka? Při hoření se dichroman amonný mění na dusík, oxid chromitý a vodu. Je to silné oxidační činidlo, výbušná a toxická látka.
Experiment, na kterém si dokážeme, že chlorečnan sodný se při vysoké teplotě rozpadá na kyslík. Důkaz provedeme zapálením gázy namočené v chlorečnanu sodném. Ta hoří mnohem rychleji než obyčejná gáza.
Chlorečnan draselný se často používá v pyrotechnice vzhledem ke své vysoké reaktivitě a explozivním vlastnostem. V tomto pokusu dojde k zapálení směsi chlorečnanu draselného a cukru pomocí kyseliny sírové. Cukr zde slouží jako palivo.
Dusík je bezbarvý plyn bez chuti a zápachu, ale má řadu jiných zajímavých vlastností. Můžeme si za pomoci kapalného dusíku vyrobit speciální raketky. Kapalný dusík nalijeme do PET lahve s obyčejnou vodou, jakmile láhev otočíme hrdlem dolů, dusík se promíchá s vodou, okamžitě se prudce odpaří, 680 krát zvětší svůj objem a spolu s vytlačovanou vodou funguje jako reaktivní pohon.
Co se stane s kyselinou boritou, když ji nasypeme do hořícího ethanolu? Plamen se zbarví do zelena. Kyselina boritá se mimo jiné také používá v pyrotechnice, v očním lékařství nebo také v jaderných elektrárnách jako regulátor výkonu reaktoru.
Výrobci čipů se pohybují v nanosvětě už hezkou řádku let. Nanotechnologie, které využívají světa o rozměrech miliardtin metru, se k nám ale dostávají stále častěji i jinými cestami. Nanoimpregnace, nanodeodoranty, nanostříbrné antibakteriální přípravky, nanoimplantáty, nanopovrchy… To vše a mnoho dalšího nabízí výzkum v oblasti nanočástic. Co z něho vyplývá v praxi?
Na večírku to asi zkusil každý. Ve vědě kolem nás si vysvětlíme, jak to funguje v praxi. Proč se nám mění hlas, když se nadýcháme helia? Jaké jsou změny hlasu heliem a jejich příčiny? A jak to vypadá, když si způsobíme změny hlasu fluoridem sírovým? Podívejte se na ukázky.
Vysvětlení alotropních forem fosforu, reaktivity, vlastností a jeho výskytu v organismu jakožto klíčového prvku pro všechny formy života. Aby bílý fosfor v kapalném kyslíku vykazoval prudkou světelnou reakci, stačí jen krátká iniciace horkou skleněnou tyčinkou.
Olovo, rtuť, kadmium nebo třeba cín a zinek. Těžké kovy jsou v malém množství přirozenou součástí půdy. Do životního prostředí se nadměrně dostávají především vinou člověka. Z půdy nebo zdrojů vody pak přecházejí do potravy. Zdravotní problémy mohou působit nejen lidem, ale i zvířatům a rostlinám. Odbourávat těžké kovy jsou schopny thilové sloučeniny.
V ukázce naleznete odpověď na záhady okolo rtuti. Kdy se rtuť stane pevnou látkou? Proč ocel plave na její hladině? Co způsobí, že rtuť pulsuje jako srdce v roztoku kyseliny sírové a peroxodisíranu sodného?
13 747
772
4 701
1 337
69
Každý měsíc přibývají na ČT edu desítky nových materiálů pro vaši výuku
Novinky posíláme jednou za měsíc. Nebudeme vám posílat žádný spam. Vložením e-mailu souhlasíte se zpracováním osobních údajů.