01:11
Máme pro vás pokus. Ukázku rozkladu vodného roztoku chloridu sodného pomocí dvou tužek, devítivoltové baterie a vodiče. Michael nám vysvětlí, co je to elektrolýza. Na dvou elektrodách získaných z ořezaných tužek se po zapojení vyvíjejí plyny. Na záporné katodě vzniká vodík, který můžeme skladovat a používat jako palivo, a na kladné anodě chlór. Možná pro vás máme recept na energetickou krizi.
Stromy a rostliny pomocí slunečního záření produkují kyslík. Vyrobit ho ale může i člověk. Smícháním chlorového bělidla a peroxidu vodíku dojde k reakci, při které vzniká voda, sůl a také kyslík. Přiblížením žhavé špejle provedeme důkaz přítomnosti kyslíku, který je nezbytný pro hoření.
Krátká ukázka reakce koncentrované kyseliny sírové s cukrem (sacharózou) a k čemu při ní dochází. Kyselina sírová je jednou z nejdůležitějších průmyslově vyráběných chemikálií. Je hydroskopická, proto odnímá látkám vodu. Z toho důvodu je třeba zacházet s kyselinou sírovou velmi opatrně, způsobuje totiž poškození kůže.
Kyselina chlorovodíková reaguje s některými kovy za vzniku vodíku. Zinek a železo jsou neušlechtilé kovy, proto s nimi kyselina reaguje. Naopak s mědí nereaguje, protože měď je ušlechtilý kov.
Gumový medvídek se skládá z různých látek. Kolagen, který je v něm obsažen, je důležitý pro tvorbu šlach a chrupavek. Co se s ním však stane při vložení do roztaveného chlorečnanu draselného? Dojde k bouřlivé reakci a hoření cukru, který je jednou z přítomných složek.
Experiment, ve kterém je vyroben střelný prach smícháním ledku, síry a uhlíku. Ledek se při vyšší teplotě rozkládá na kyslík, který podporuje hoření síry a uhlíku.
Co obsahuje více vitamínu C, pomeranč nebo citron? Zjistíme to díky jednoduchému pokusu se šťávou z citronu a pomeranče, kukuřičným škrobem a jódem. Roztok vody, jodu a škrobu působí jako indikátor vitamínu C.
Pokus, ve kterém dojde k reakci sodíku s vodou na rozhraní voda/hexan. Sodík reaguje s vodou za vzniku hydroxidu sodného a vodíku.
Vlastnosti a formy oxidu titaničitého, které jsou přiblíženy ve videu, jsou známé. Relativní novinkou je jeho využití jako fotokatalyzátoru. Seznámíte se s principem fotokatalýzy, kterou lze využít pro ničení škodlivých látek i mikrobů. Důležitý je také fakt, že konečnými produkty fotokatalýzy jsou jednoduché anorganické látky, oxid uhličitý a voda.
Který oxid je hlavní složkou skla? Jaký je chemický vzorec oxidu křemičitého? V jaké soustavě krystalizuje oxid křemičitý? Při jaké teplotě se taví sklo? A v jaké soustavě krystalizuje křišťál? To všechno zjistíte v našem kvízu.
Oxid uhličitý pocházející ze spalování fosilních paliv značně přispívá ke globálnímu oteplování. Zvýšení množství oxidu uhličitého v atmosféře brání úniku tepla do vesmíru a zahřívá naši planetu. Ale co kdybychom oxid uhličitý zachytili dříve, než unikne? Přesně o to usilují evropští vědci a technici. Podstata této koncepce spočívá v tom, že se zachytí oxid uhličitý pocházející z elektráren a jiných závodů založených na spalování uhlí a uloží se hluboko do země.
Ukázka pojednává o vlastnostech stříbra a jeho využití a demonstruje znečištění stříbra sírou za vzniku sulfidu stříbrného. Na pokusu je zde také vysvětlena redoxní reakce, tedy odstranění sulfidu stříbrného redukcí hliníkem.
Seznamte se s hliníkem. Osvětlíme si jeho výskyt, význam a použití, zejména použití na plechovky na nápoje. V čem jsou výhodnější než láhve? A co je to vinylit, kouzelná sloučenina, která udržuje nápoje v plechovkách čerstvé? Na pokusu si dokážeme její přítomnost v plechovce od piva ponořením do roztoku hydroxidu sodného. Celý experiment si znázorníme chemicko-pantomimickou rovnicí.
Podívejte se na nové sloučeniny s využitím tantalu v léčbě rakoviny, které vyvinuli olomoučtí vědci. Jak je testovali a s jakými výsledky? Uvidíte také srovnání s cisplatinou, která se používá k léčbě dnes, bohužel s nepříjemnými vedlejšími účinky. Nyní je nutný další výzkum, cesta nových léků k pacientům bude ještě dlouhá.
Vlastnosti kapalného dusíku jsou dobře známé. Ale co se stane odpařením kapalného dusíku? Kapalný dusík vpravíme do PET lahve, kterou uzavřeme a vložíme ho do nádoby s pingpongovými míčky. Dojde k výbuchu, protože dusík při odpaření zvětší několikrát svůj objem.
Experiment, na kterém si dokážeme, že chlorečnan sodný se při vysoké teplotě rozpadá na kyslík. Důkaz provedeme zapálením gázy namočené v chlorečnanu sodném. Ta hoří mnohem rychleji než obyčejná gáza.
13 882
779
4 751
1 352
68
Každý měsíc přibývají na ČT edu desítky nových materiálů pro vaši výuku
Novinky posíláme jednou za měsíc. Nebudeme vám posílat žádný spam. Vložením e-mailu souhlasíte se zpracováním osobních údajů.