01:11
Máme pro vás pokus. Ukázku rozkladu vodného roztoku chloridu sodného pomocí dvou tužek, devítivoltové baterie a vodiče. Michael nám vysvětlí, co je to elektrolýza. Na dvou elektrodách získaných z ořezaných tužek se po zapojení vyvíjejí plyny. Na záporné katodě vzniká vodík, který můžeme skladovat a používat jako palivo, a na kladné anodě chlór. Možná pro vás máme recept na energetickou krizi.
Stromy a rostliny pomocí slunečního záření produkují kyslík. Vyrobit ho ale může i člověk. Smícháním chlorového bělidla a peroxidu vodíku dojde k reakci, při které vzniká voda, sůl a také kyslík. Přiblížením žhavé špejle provedeme důkaz přítomnosti kyslíku, který je nezbytný pro hoření.
Krátká ukázka reakce koncentrované kyseliny sírové s cukrem (sacharózou) a k čemu při ní dochází. Kyselina sírová je jednou z nejdůležitějších průmyslově vyráběných chemikálií. Je hydroskopická, proto odnímá látkám vodu. Z toho důvodu je třeba zacházet s kyselinou sírovou velmi opatrně, způsobuje totiž poškození kůže.
Kyselina chlorovodíková reaguje s některými kovy za vzniku vodíku. Zinek a železo jsou neušlechtilé kovy, proto s nimi kyselina reaguje. Naopak s mědí nereaguje, protože měď je ušlechtilý kov.
Plamenovou zkouškou se často dá dokázat přítomnost určitých kationtů. V tomto pokusu je provedena plamenová zkouška modré skalice.
Jakou látku přidáme do mycího prostředku, aby byly bubliny pevnější? Glycerol, který má díky svému složení a délce molekul vysokou viskozitu, lidově mazlavost, a podporuje tvorbu bublin.
V pokusu porovnáme tři směsi plynů: vzduch, vydechovaný vzduch z plic a oxid uhličitý připravený reakcí octa a kypřícího prášku. Každý z plynů vpravíme do sklenice s připraveným flavinovým indikátorem pH z červeného zelí. Vysoká koncentrace oxidu uhličitého vytvoří kyselý roztok, který se projeví zbarvením indikátoru do červena. Oxid uhličitý je rozpustný ve vodě, která se nachází v mracích, což vysvětluje vznik kyselých dešťů.
Do roztoku chloridu sodného s fenolftaleinem ponoříme dvě elektrody a připojíme zdroj stejnosměrného proudu. Roztok kolem katody se zbarví do růžova, protože při elektrolýze na katodě vzniká zásaditý hydroxid sodný a v zásaditém prostředí se fenolftalein barví do růžova.
Kyslík byl před třemi miliardami let velice nebezpečným plynem, nyní si bez něj nedovedeme život představit. Kyslík je velmi reaktivní, což Michael demonstruje zapálením kapalného kyslíku.
Erupce sopek se projevuje několika způsoby: seizmickou aktivitou, elektromagnetismem nebo geologickými deformacemi. Pro prevenci ztrát na lidských životech je nejdůležitější znát složení a koncentraci unikajícího plynu, především oxidu siřičitého. Po změření koncentrace oxidu siřičitého mohou vědci předpovědět, kolik magmatu se dere na povrch, tedy jak blízká je erupce. Jak tyto údaje vědci měří?
Poutavým způsobem jsou ukázány vlastnosti a použití olova. Co se stane s předměty ponořenými do roztaveného olova a jaká je jeho teplota tání? Co se stane s prstem ruky ponořením do roztaveného olova?
Do kádinky s hořící svíčkou nasypeme jedlou sodu a přidáme ocet. Reakcí vzniká oxid uhličitý, který je těžší než vzduch a nepodporuje hoření, takže dojde kvůli nedostatku kyslíku k uhašení svíčky.
Baterie je základním zdrojem energie pro mnoho přístrojů v domácnosti i průmyslu. Odhaduje se, že průmysl vyrábějící baterie prodá ročně na celém světě výrobky za 48 miliard dolarů. Jak baterie funguje a jak si můžeme doma sestrojit baterii z ovoce a zeleniny? Vyzkoušejte to na pokusu, který ukazuje principy redoxní reakce, elektrického proudu a stejnosměrného napětí.
Co se stane s výškou hlasu, pokud vdechneme fluorid sírový? Fluorid sírový funguje opačně než helium, protože je těžší než vzduch. Tím, jak hlas rezonuje v dutinách, které nejsou v tu chvíli naplněny vzduchem, dojde ke vzniku hlubokého hlasu.
Experiment, na kterém si dokážeme, že chlorečnan sodný se při vysoké teplotě rozpadá na kyslík. Důkaz provedeme zapálením gázy namočené v chlorečnanu sodném. Ta hoří mnohem rychleji než obyčejná gáza.
Vlastnosti a formy oxidu titaničitého, které jsou přiblíženy ve videu, jsou známé. Relativní novinkou je jeho využití jako fotokatalyzátoru. Seznámíte se s principem fotokatalýzy, kterou lze využít pro ničení škodlivých látek i mikrobů. Důležitý je také fakt, že konečnými produkty fotokatalýzy jsou jednoduché anorganické látky, oxid uhličitý a voda.
13 955
796
4 751
1 352
68
Každý měsíc přibývají na ČT edu desítky nových materiálů pro vaši výuku
Novinky posíláme jednou za měsíc. Nebudeme vám posílat žádný spam. Vložením e-mailu souhlasíte se zpracováním osobních údajů.