Největší portál vzdělávacích videí v ČR
menu

Dynamika

Rozšiřující materiály:

Délka videa:

Stupeň vzdělání:

Vybrané filtry:

Smazat vše

Stupně:

Témata:

Řadit podle:

Seřadit podle...

Zobrazuji 1-24 z 31
Pokusy: 2. Newtonův zákon
03:11

Pokusy: 2. Newtonův zákon

Druhý Newtonův zákon, neboli zákon síly, si dokážeme pomocí autíčka a fénu. Pokud bude na autíčko působit větší síla, udělí mu větší zrychlení. V případě stejně velké působící síly se pomaleji bude rozjíždět autíčko s nákladem. Zrychlení je tedy přímo úměrné působící síle a nepřímo úměrné hmotnosti. Druhý Newtonův zákon nám říká jednu důležitou věc. Kde je síla, tam musí být i zrychlení a naopak. Kde je zrychlení, tam musí automaticky působit nějaká síla. Chcete si udělat představu, jak velká je síla jednoho newtonu?

Pokus: 3. Newtonův zákon
02:23

Pokus: 3. Newtonův zákon

Třetí Newtonův zákon se také nazývá zákon akce a reakce. Ukážeme si platnost tohoto zákona na odrazu běžce při startu. V okamžiku startu zatlačí běžec chodidlem do startovního bloku. Ve stejném okamžiku vznikne síla opačného směru, kterou startovní blok působí do chodidla běžce. Právě tuto sílu využívají běžci k rychlému startu. Při odstrkování dvou stejně těžkých loděk bidlem se rozjedou obě loďky od sebe stejnoměrně, přestože působila pouze jedna osoba na bidlo. Platí totiž, že jakou silou působí bidlo na loď, takovou silou působí loď na bidlo.

Pokus: Tíha a beztížný stav
07:26

Pokus: Tíha a beztížný stav

Hmotnost je jednou ze základních vlastností hmoty. Oproti tomu tíha je síla, kterou těleso v gravitačním poli působí na podložku či závěs. A co je vlastně beztížný stav? Beztížný stav může nastat i ve velmi silném gravitačním poli. Nejznámějším případem beztížného stavu je pobyt kosmonautů ve vesmírné lodi na oběžné dráze okolo Země. Také při skákání na trampolíně se gymnastka kromě okamžiku dopadu a odrazu nachází v beztížném stavu. Díky působení tíhy můžeme zjišťovat hmotnost těles. A ukazovala by váha na Zemi stejně jako na Měsíci?

Pokus: Zákon zachování hybnosti
03:20

Pokus: Zákon zachování hybnosti

Tělesa si mohou vzájemnými nárazy hybnost předávat. O tom se přesvědčíme na pokusu s mincemi. Součet hybností v izolované soustavě se nemění. Zákon zachování hybnosti si dokážeme prostřednictvím pokusu s modelem rakety.

Pokus: Hybnost a impulz síly
05:14

Pokus: Hybnost a impulz síly

Při zastavování automobilu musíme změnit jeho hybnost. Změna hybnosti je definována jako součin brzdné síly a času. Impuls síly má stejnou velikost jako změna hybnosti, kterou způsobuje. Pokud známe změnu hybnosti a dobu, po kterou tato změna probíhá, můžeme vypočítat brzdné a nárazové síly. Jak můžeme účinek hybnosti zmírnit nebo naopak zvýšit?

Pokus: Síly a pohyb po kružnici
03:49

Pokus: Síly a pohyb po kružnici

Při pohybu po kružnici působí na těleso dostředivá síla. Na otáčejícím se řetízkovém kolotoči působí na osobu v sedačce tahová síla řetězu a tíhová síla. Jejich výslednicí je síla mířící do středu kolotoče, dostředivá síla. Takto to vidíme z pozice vnějšího pozorovatele. Z pohledu kamery upevněné na kolotoči je osoba na kolotoči v klidu. To můžeme vysvětlit pomocí setrvačné odstředivé síly, která je stejně velká, ale působí opačným směrem než síla dostředivá. Účinky takovýchto setrvačných sil můžeme pozorovat v neinerciální vztažné soustavě.

Pokusy: 1. Newtonův zákon
03:44

Pokusy: 1. Newtonův zákon

Jak zní první Newtonův zákon neboli zákon setrvačnosti? Na míč, položený na lavičce, působí dvě síly: tíhová síla Země a tlaková síla lavičky. Obě síly jsou v rovnováze, proto výsledná síla je nulová a míč zůstává v klidu. Stejně je tomu tak i v případě, že se těleso pohybuje rovnoměrně přímočaře. Přesvědčíme se o tom v tramvaji. Jestliže tramvaj stojí, všechna tělesa v ní jsou vzhledem k tramvaji i Zemi v klidu. Pokud se tramvaj pohybuje rovnoměrně přímočaře, opět jsou všechna tělesa vzhledem k tramvaji v klidu, pohybují se vzhledem k Zemi spolu s tramvají. Žádným pokusem se nedá zjistit, jestli tramvaj stojí nebo se pohybuje rovnoměrným přímočarým pohybem. Z hlediska fyziky se jedná o jeden a ten samý pohybový stav. Až když tramvaj brzdí, zatáčí nebo zrychluje, začnou se uvnitř dít podivuhodné věci.

Pokus: Smykové tření a valivý odpor
12:26

Pokus: Smykové tření a valivý odpor

Existují dva druhy tření: statické a dynamické. Přičemž statické tření je větší než dynamické. Na čem závisí smykové tření? Tedy tření, které vzniká, pokud smýkáme nějakým předmětem. Závisí především na hmotnosti a na charakteru styčných ploch, které popisuje součinitel smykového tření. Značí se písmenkem f. Proč to na ledu klouže? Jak by vypadal svět bez tření? Jaký je rozdíl mezi smykovým třením a valivým odporem? A jak toho lidé využívají?

Pokusy: Mechanický tlak
10:45

Pokusy: Mechanický tlak

Mechanický tlak je jedním z fyzikálních jevů, který se nám plete do života na každém kroku. Jaké jsou účinky tlakové síly na pružná a nepružná tělesa? Na čem závisí tlak a jaké jsou jeho účinky? Jak se s tlakem vyrovnávají fakíři? Bolelo by víc, kdyby člověku na nohu stoupl slon, nebo slečna jehlovým podpatkem? Proč je ostří nože tak tenké? A jak ždímá vaše pračka?

Newtonovy pohybové zákony
07:13

Newtonovy pohybové zákony

Tři Newtonovy pohybové zákony popisují vztahy mezi silami, které působí na těleso, a pohybem tohoto tělesa. Mezi tyto zákony patří zákon setrvačnosti, zákon síly a zákon akce a reakce. Tyto zákony jsou nám představeny v praxi pomocí kulečníkových koulí a lyžařské sjezdovky.

Setrvačnost, Isaac Newton a ubrus
05:51

Setrvačnost, Isaac Newton a ubrus

Na principu I. Newtonova zákona je vysvětleno fungování bezpečnostních pásů v automobilech a přesněji je to vysvětleno v experimentu s karabinou a provázkem. Dále je zákon setrvačnosti použit při pokusu se strháváním ubrusu ze stolu.

Pokus: Setrvačnost a mince
01:04

Pokus: Setrvačnost a mince

Dva druhy mincí naskládáme na sebe do sloupečku. Budeme střídat tmavé a světlé. Co se s nimi stane, pokud budeme pod sloupečkem rychle kmitat nožem? Mince se nám roztřídí podle barev. Díky zákonu setrvačnosti a rychlému pohybu nože stojí celý sloupec na místě a pohybuje se vždy pouze spodní mince.

Kvíz: Tření
02:46

Kvíz: Tření

Které fyzikální veličiny ovlivňují tření? Kdy je tření užitečné? Kdy vzniká valivý odpor? Existuje tření ve vesmíru? Má valivý odpor větší brzdné účinky než smykové tření? Závisí velikost smykového tření na obsahu styčných ploch? Kdy je nám tření na obtíž? Odpovědi se dozvíte v kvízu.

Pokus: Střelba pod vodou
09:28

Pokus: Střelba pod vodou

Podíváme se na střelbu z pohledu fyziky. Co dokáže samonabíjecí puška klon samopalu vzor 58 s dostřelem 2,8 km? Jakou ochranu poskytují neprůstřelné vesty? Dostřel zbraně závisí na okolním prostředí. Voda má hustotu zhruba 1000x větší než vzduch, proto kulku výrazně zpomalí. Ve vodě bude mít zvolená zbraň dostřel necelé 3 metry. Po výstřelu ve vodě se během zlomku sekundy stane několik jevů. Díky plynům vznikne na konci hlavně bublina s extrémně vysokým tlakem uvnitř. Následuje kavitace, kdy prudkým snížením tlaku dojde k přeměně kapaliny na páru. Zajímavá je i rotace kulky kolem podélné osy, což je způsobeno drážkováním hlavně. Tento fascinující, ale hodně nebezpečný pokus, který nám předvádí Vladimír Kořen a Maroš Kramár, rozhodně doma nezkoušejte.

Jeden den s fyzikou
04:28

Jeden den s fyzikou

Opravdu se člověk setkává s fyzikou v běžném životě tak často, že se jí musí učit? Budeme jeden den sledovat Kláru a uvidíme, kolik fyziky v něm najdeme. Klára se seznámí s rovnoměrným přímočarým pohybem, nerovnoměrným pohybem, odporovou silou, zákonem akce a reakce, setrvačností, tlakovou silou a hybností.

Úvod do dynamiky – pachatelé pohybu
01:33

Úvod do dynamiky – pachatelé pohybu

Pachatelé pohybu způsobují změnu pohybového stavu vždy prostřednictvím sil. Není změn pohybu bez sil, které ji způsobují. Budeme-li působit silou na auto, roztlačíme ho. Ta část fyziky, která se zabývá silami a jejich pohybovými účinky, se nazývá dynamika. Základní zákonitosti dynamiky shrnují tři Newtonovy zákony.

Pokusy: Skládání a rozklad sil
08:20

Pokusy: Skládání a rozklad sil

V okamžiku dotyku začne tenisová raketa působit na míček a ten změní směr pohybu. Úder mu udělil zrychlení ve směru působení síly. Zrychlení a síla patří mezi vektorové veličiny. V reálném světě málokdy působí na tělesa pouze jedna síla. Účinky více sil se mohou vektorově sčítat do jedné výslednice. Ukážeme si vektorový součet sil působících na loďku. Síly můžeme i rozkládat, jak si ukážeme při šikmém vrhu koulí. Přesvědčíme se, zda může člověk zvednout sám sebe.

Proč letadlo může letět
01:19

Proč letadlo může letět

Jak je možné, že letadlo může letět? Na letadlo působí čtyři síly: gravitace, vztlak, odpor a tah. Při letu musí být vzájemně vyrovnané. Motor spolu s vrtulí vytváří tah, a tím vyrovnává odpor letadla při pohybu. Na křídlech se vytváří vztlak, který působí proti gravitaci. Podstatný je tvar křídla a to, jak na něm proudí vzduch. Díky vypouklému zakřivení na horní straně křídla se proudnice urychlují, vzniká sání a díky rovnosti spodní strany křídla se proudnice zpomalují a vzniká přetlak. A tyto dvě síly letadlo nadzvedávají.

Pokus: Hybnost
03:56

Pokus: Hybnost

Na čem závisí, zda se rozbije sklo? Závisí to nejen na hmotnosti tělesa, ale také na tom, jakou má hybnost. Co je vlastně hybnost? Hybnost je schopnost pohybujícího se tělesa něco rozbít. Je to vektorová fyzikální veličina, která závisí na hmotnosti a okamžité rychlosti pohybujícího se tělesa. Vypočteme, jakou hybnost má bowlingová koule.

Pokusy: Dostředivá síla
04:22

Pokusy: Dostředivá síla

Díky dostředivé síle krouží planety kolem svých hvězd, ale také je využívána v zábavních parcích. S pomocí několika málo předmětů, jako je balónek, pár drobných mincí a sklenice vody, se seznámíme s tímto důležitým fyzikálním jevem a vysvětlíme si, jak naši Zemi drží na oběžné dráze kolem Slunce.

Pokus: Třecí kladka
07:01

Pokus: Třecí kladka

Na jednom konci provázku je připevněn hrníček a na druhém konci závaží. Hrníček je zavěšen pod úhlem devadesáti stupňů přes třecí kladku, kterou nahrazuje vařečka. Pokud závaží pustíme, hrneček bude padat k zemi, ale nedopadne, a tudíž se nerozbije. Závaží se setrvačností otočí kolem vařečky a hrneček zastaví. Vladimír nám předvede tento pokus na vlastní kůži, kdy bude padat z výšky 17 metrů.

Raketa z dusíku
02:01

Raketa z dusíku

Dusík je bezbarvý plyn bez chuti a zápachu, ale má řadu jiných zajímavých vlastností. Můžeme si za pomoci kapalného dusíku vyrobit speciální raketky. Kapalný dusík nalijeme do PET lahve s obyčejnou vodou, jakmile láhev otočíme hrdlem dolů, dusík se promíchá s vodou, okamžitě se prudce odpaří, 680 krát zvětší svůj objem a spolu s vytlačovanou vodou funguje jako reaktivní pohon.

Podtlak
01:05

Podtlak

Co se stane, když na hladký talíř s vodou postavíme zapálenou svíčku a přiklopíme ji sklenicí?

Pokus: Auto na hrnečkách
03:13

Pokus: Auto na hrnečkách

Jakou zátěž unesou čtyři keramické hrnečky? Atomy v keramickém hrnku tvoří pevné chemické vazby. To způsobuje, že je keramika při nárazu křehká, a proto se keramický hrneček při pádu rozbije. Stejná pevnost způsobuje, že keramický hrnek má velkou odolnost vůči rovnoměrnému tlaku. Pod kola automobilu umístíme čtyři keramické hrníčky a automobil naložíme betonovými deskami. Hrnečky unesou auto s nákladem a tři osoby.

Probíhá načítání